Chemical Communications

Number 19 1983

Stereospecific Synthesis of Tabtoxin

Jack E. Baldwin," Patrick D. Bailey, Gerard Gallacher, Kevin A. Singleton, and (in part), Philip M. Wallace

The Dyson Perrins Laboratory, University of Oxford, South Parks Road, Oxford OX7 3QY, U.K.

The exotoxin, Tabtoxin, from *Pseudomonas tabaci* (the organism responsible for Wildfire disease of tobacco plants) has been synthesised by a stereospecific route involving, as a key stereochemistry-defining step, the cycloaddition of an acylnitroso compound to a cyclohexadiene.

Wildfire disease is an infectious leafspot disease of tobacco plants first reported in 1917¹ and known to be caused by an exotoxin called Tabtoxin **(1)** produced by the infecting agent *Pseudomonas tabaci*. The structure² and stereochemistry³ of **(1)** were revealed relatively recently, largely due to the instability $(t_1, pH 7, 24 h at 25 °C)$ of the toxin, which undergoes a facile intramolecular transacylation to the stable, inactive, isotabtoxin **(2).** The toxin appears to exert itseffect on theplant by inhibition of the photorespiratory nitrogen cycle *via* a specific blockade of glutamine synthetase.^{4} We now report the first synthesis of this toxin, in which the crucial stereochemical relationship between $C(2)$ and $C(5)$ was achieved by simultaneous formation of C(2)-N and C(5)-0 bonds *via* a Diels-Alder reaction of an acylnitroso compound with a suitable cyclohexadiene⁵ (Scheme 1).

Scheme 1. *E.g.* $R = OCH_2Ph$; $X = CO_2Et$.

Thus ethyl cyclohexa-1,3-dienecarboxylate reacted with benzyl nitrosoformate (generated in *situ* from N-benzyloxycarbonyl hydroxylamine and $Et_4N+IO_4^-$, CH_2Cl_2) to yield a single regioisomer **(3)** [93 %, **lH** n.m.r., 6(CDCl,) **4.85** (1 H, m, -C-H), 6.6 (2H, m, olefinic)].[†] The regiochemistry of this reaction was confirmed by hydrogenation (Pd/C, EtOH) and acetylation to (4) (m.p. $144-146$ °C) in which the amide hydrogen showed splitting [¹H n.m.r., δ (CDCl₃) 5.36 (d, J 5 Hz)] from a single methine hydrogen. Reduction with sodium borohydride gave the alcohol *(5)* (100%) which was oxidised [Moffat, dicyclohexylcarbodi-imide, Me₂SO; pyridine-trifluoroacetic acid (TFA), 68 %] to the aldehyde *(6),* isolated in

^t**All** new compounds gave satisfactory analytical and spectral data.

admixture with its hydrate. Since direct reductive amination was not possible, largely due to dialkylamine formation, the desired amine **(8)** was obtained indirectly by conversion of the aldehyde *(6)* into the protected amine **(7),** with 4,4'-dimethoxybenzhydramine and NaBH₃CN (MeOH, HCl, pH 6, 3\AA molecular sieves, 59%), which was readily deprotected (TFA, anisole, 25 °C, 89%) to the amine **(8)** ^{[1}H n.m.r., δ (CDCl₃) 3.00 (2H, s, CH_2NH_2), 4.77--4.82 (1H, m, $-CHN$), 6.44--6.22 $(2H, m,$ olefinic)] and then converted $(CICH₂COCl, CH₂Cl₂,$ Et₃N, 0 °C) into the chloroacetamide (9) $(86\%, m.p. 65-66$ °C), in preparation for oxidative cleavage of the double bond. This step was achieved following a procedure of Starks (KMnO₄, H_2O , C_6H_6 , $Bu_4N^+HSO_4^-$, $25 °C$ ⁶ which provided the racemic diacid (10) *{58%*, m.p. 178-179 °C, ¹H n.m.r., δ(CD₃CN) 3.48 and 4.05 (2H, ABX, J_{AB} 14, J_{AX} 3, J_{BX} 8 Hz, $-CH_2NH$ -), 3.92 (2H, **S,** -CH,CI), 4.73 [IH, dd, -CH(CO,H)N] }.

Differentiation of the carboxy groups in (10) was achieved *via* the preparation of the dipivaloyl mixed anhydride (11) [MeCN, Et_3N (2 equiv.), $0^{\circ}C$, Bu^tCOCl (2 equiv.), 30 min] which reacted *in situ* with O-benzyl-L-threonine benzyl ester' $(0 °C, 1 h, 25 °C, 3 h)$ to give the product (12) resulting from selective attack at the less hindered of the two carbonyl groups, as a mixture of diastereoisomers,[†] which was then converted $(Ph_2CN_2, CH_2Cl_2, 25 \degree C, 10 \text{ min})$ into the crystalline benzhydry1 esters. One diastereoisomer crystallised from ethyl acetate [now known to be (13), m.p. 180-182 °C, 25% from (10)], and the other from diethyl ether [m.p. $98-100$ °C, 28% from (10)]. Both isomers were carried through the rest of the synthesis. Thus the isomer (13) $(m.p. 180-182 \degree C)$ was deprotected (TFA, 25 °C, 1 h) to the acid (12) [90%, m.p. 154-156 °C, ¹H n.m.r., δ (CD₃CN) 3.39 and 4.07 (2H, ABX, J_{AB} 14.5, J_{BX} 9.5, J_{AX} 2.8 Hz, CH₂NH), 3.92 (2H, s, -CH₂Cl)] and then further deprotected (thiourea, MeCN, EtOH, 40 °C, 48 h, $50\frac{\%}{\degree}$ to the amino acid (14) which was directly cyclised (2-

 \ddagger The absolute stereochemistry of only one of the two diastereoisomers is depicted here.

thiopyridinedisulphide, Ph_3P , MeCN, reflux, 6 h)⁹ to the spirocyclic p-lactam (15) [30%, **Vmax** (neat) 1780, 1745, and 1680 cm-'1. Hydrogenolysis (Pd/C, MeOH, 25 "C, 14 h) of **(15)** gave tabtoxin (1) [90%, lH n.m.r., 8(D,O) 1.02 (3H, d, *J* **7** Hz, CH₃), 1.66–1.92 (4H, m, CH₂CH₂), 3.16 (1H, d, J_{AB} 6 Hz, H_A (3H, m, MeC-OH, CHOH, and CHNH₂)]. This material showed the same biological activity on the tobacco plant, the same glutamine synthetase and *E. coli* growth assay and had an identical ¹H n.m.r. spectrum $(D_2O, 300 MHz)$ to the natural tabtoxin isolated from P. *tabaci.* The stereoisomer (16), obtained from the lower m.p. isomer of (13), showed virtually no activity in the biological tests. of CH₂N), 3.30 (1H, d, J_{AB} 6 Hz, H_B of CH₂N), 4.0-4.1

We are indebted to Dr. J. G. Turner, School of Biological Sciences, University of East Anglia, for a sample of natural tabtoxin and also for the biological assays.

Received, 8th July 1983; Corn. 916

References

- 1 F. A. Wolf and **A.** C. Foster, *Science,* 1917, 46, 361.
- 2 W. W. Stewart, *Nature,* 1971, 229, 174.
- 3 D. L. Lee and **H.** Rapoport, *J. Org. Chem.,* 1975, **40,** 3491; P. **A.** Taylor, H. K. Schnoes, and R. D. Durbin, *Biochim, Biophys. Acta,* 1972, 286, 107; J. P. Scannell, D. **L.** Pruess, **J.** F. Blount, H. **A. Ax,** M. Kellett, F. Weiss, T. C. Demny. T. **H.** Williams, and **A.** Stempel, *J. Antibiot.,* 1975, 28, 1 ; D. W, Woolley, G. Schaffner, and **A.** C. Braun, J. *Biol. Chem.,* 1952, **197,** 807.
- 4 J. G. Turner, personal communication.
- 5 G. W. Kirby, *Chem. Soc. Rev.,* 1977, 6, **1.**
- 6 C. M. Starks, J. *Am. Chem. Soc.,* 1971, **93,** 195.
- 7 T. Mizoguchi, G. Levin, D. W. Woolley, and J. **M.** Stewart, *J. Org. Chem.,* 1968, **33,** 903.
- 8 **A.** Signor and D. Nisato, *Gazz. Chim.* Ital., 1972, 102, 364; D. Y. Gagnave and P. J. **A.** Vottero, *Carbohydr. Res.,* 1973,28, 165.
- 9 S. Kobayashi, T. Iimori, T. Izawa, and M. Ohno, *J.* Am. *Chem. SOC.,* 1981, **103,** 2406.